История развития компьютерной графики сообщение. История компьютерной графики

Отправной точкой развития компьютерной графики можно считать 1930 год, когда в США нашим соотечественником Владимиром Зворыкиным, работавшим в компании “Вестингхаус” (Westinghouse), была изобретена электронно-лучевая трубка (ЭЛТ), впервые позволяющая получать изображения на экране без использования механических движущихся частей.

Началом эры собственно компьютерной графики можно считать декабрь 1951 года, когда в Массачусеттском технологическом институте (МТИ) для системы противовоздушной обороны военно-морского флота США был разработан первый дисплей для компьютера “Вихрь”. Изобретателем этого дисплея был инженер из МТИ Джей Форрестер.

Одним из отцов-основателей компьютерной графики считается Айвен Сазерленд (Ivan Sotherland), который в 1962 году все в том же МТИ создал программу компьютерной графики под названием “Блокнот” (Sketchpad).Эта программа могла рисовать достаточно простые фигуры (точки, прямые, дуги окружностей), могла вращать фигуры на экране.

Под руководством Т. Мофетта и Н. Тейлора фирма Itek разработала цифровую электронную чертежную машину. В 1964 году General Motors представила систему автоматизированного проектирования DAC-1, разработанную совместно с IBM.

В 1965 году фирма IBM выпустила первый коммерческий графический терминал под названием IBM-2250 (рис.5).

В 1968 году группой под руководством Н. Н. Константинова была создана компьютерная математическая модель движения кошки. Машина БЭСМ-4,выполняя написанную программу решения дифференциальных уравнений, рисовала мультфильм «Кошечка» (рис.7), который для своего времени являлся прорывом. Для визуализации использовался алфавитно-цифровой принтер.

В 1977 году Commodore выпустила свой РЕТ (персональный электронный делопроизводитель), а компания Apple создала Apple-II. Появление этих устройств вызывало смешанные чувства: графика была ужасной, а процессоры медленными. Однако ПК стимулировали процесс разработки периферийных устройств: недорогих графопостроителей и графических планшетов.

К концу 80-х программное обеспечение имелось для всех сфер применения: от комплексов управления до настольных издательских комплексов. В конце восьмидесятых возникло новое направление рынка на развитие аппаратных и программных систем сканирования, автоматической оцифровки. Оригинальный толчок в таких системах должна была создать магическая машина Ozalid, которая бы сканировала и автоматически векторизовала чертеж на бумаге, преобразуя его в стандартные форматы CAD/CAM. Однако, акцент сдвинулся в сторону обработки, хранения и передачи сканируемых пиксельных.

В 90-х стираются отличия между КГ и обработкой изображения. Машинная графика часто имеет дело с векторными данными, а основой для обработки изображений является пиксельная информация.

Еще несколько лет назад каждый пользователь требовал рабочую станцию с уникальной архитектурой, а сейчас процессоры рабочих станций имеют быстродействие, достаточное для того, чтобы управлять как векторной, так и растровой информацией. Кроме того, появляется возможность работы с видео. Прибавьте аудиовозможности - и вы имеете компьютерную среду мультимедиа.

Все области применения - будь то искусство, инженерная и научная, бизнес/развлечения и - являются сферой применения КГ. Возрастающий потенциал ПК и их громадное число - обеспечивает устойчивый рост индустрии в данной отрасли.

Формирование общих понятий о компьютерной графике

Отправной точкой развития компьютерной графики можно считать 1930 год, когда в США нашим соотечественником Владимиром Зворыкиным (рис.1.), работавшим в компании “Вестингхаус” (Westinghouse), была изобретена электронно-лучевая трубка (ЭЛТ), впервые позволяющая получать изображения на экране без использования механических движущихся частей.

Началом эры собственно компьютерной графики можно считать декабрь 1951 года, когда в Массачусеттском технологическом институте (МТИ) для системы противовоздушной обороны военно-морского флота США был разработан первый дисплей для компьютера “Вихрь” (рис.2). Изобретателем этого дисплея был инженер из МТИ Джей Форрестер.

Одним из отцов-основателей компьютерной графики считается Айвен Сазерленд (Ivan Sotherland), который в 1962 году все в том же МТИ создал программу компьютерной графики под названием “Блокнот” (Sketchpad) (рис.3). Эта программа могла рисовать достаточно простые фигуры (точки, прямые, дуги окружностей), могла вращать фигуры на экране.

Под руководством Т. Мофетта и Н. Тейлора фирма Itek разработала цифровую электронную чертежную машину. В 1964 году General Motors представила систему автоматизированного проектирования DAC-1 (рис.4.), разработанную совместно с IBM.

В 1965 году фирма IBM выпустила первый коммерческий графический терминал под названием IBM-2250 (рис.5).

В 1968 году группой под руководством Н. Н. Константинова была создана компьютерная математическая модель движения кошки. Машина БЭСМ-4 (рис.6), выполняя написанную программу решения дифференциальных уравнений, рисовала мультфильм «Кошечка» (рис.7), который для своего времени являлся прорывом. Для визуализации использовался алфавитно-цифровой принтер.

В 1977 году Commodore выпустила свой РЕТ (рис.8.) (персональный электронный делопроизводитель), а компания Apple создала Apple-II (рис.9). Появление этих устройств вызывало смешанные чувства: графика была ужасной, а процессоры медленными. Однако ПК стимулировали процесс разработки периферийных устройств: недорогих графопостроителей и графических планшетов.

В конце 70-х годов для космических кораблей “Шаттл” появились летные тренажеры, основанные на компьютерной графике.
В 1982 году на экраны кинотеатров вышел фильм “Трон” (рис.10) в котором впервые использовались кадры, синтезированные на компьютере.
В 1984 году был выпущен первый Macintosh, название которого произошло от сорта яблок "Макинтош" (рис.11) с их графическим интерфейсом пользователя. Первоначально областью применения ПК были не графические приложения, а работа с текстовыми процессорами и электронными таблицами, но его возможности как графического устройства побуждали к разработке относительно недорогих программ как в области САПР, так и в более общих областях бизнеса и искусства.

К концу 80-х программное обеспечение имелось для всех сфер применения: от комплексов управления до настольных издательских комплексов. В конце восьмидесятых возникло новое направление рынка на развитие аппаратных и программных систем сканирования, автоматической оцифровки. Оригинальный толчок в таких системах должна была создать магическая машина Ozalid, которая бы сканировала и автоматически векторизовала чертеж на бумаге, преобразуя его в стандартные форматы CAD/CAM. Однако, акцент сдвинулся в сторону обработки, хранения и передачи сканируемых пиксельных

В 90-х стираются отличия между КГ и обработкой изображения. Машинная графика часто имеет дело с векторными данными, а основой для обработки изображений является пиксельная информация. Еще несколько лет назад каждый пользователь требовал рабочую станцию с уникальной архитектурой, а сейчас процессоры рабочих станций имеют быстродействие, достаточное для того, чтобы управлять как векторной , так и растровой информацией. Кроме того, появляется возможность работы с видео. Прибавьте аудиовозможности - и вы имеете компьютерную среду мультимедиа.

Все области применения - будь то искусство, инженерная и научная, бизнес/развлечения и - являются сферой применения КГ. Возрастающий потенциал ПК и их громадное число - обеспечивает устойчивый рост индустрии в данной отрасли.

Х/ф. «Трон», «Шрек»/

Формирование общих понятий о компьютерной графике

Но, в настоящее время существуют:


  1. Растровая графика.

  2. Векторная графика.

  3. Трехмерная графика.

  4. Фрактальная графика.

  5. Символьная графика
В связи с этим необходимо на парах разобрать все пять видов графики с целью формирования общего представления студентов о предмете и формирования их заинтересованности в нем.
Компьютерная графика (рассмотрим различные определения понятия "компьютерная графика")

  • область информатики, занимающаяся проблемами получения различных изображений (рисунков, чертежей, мультипликации) на компьютере ;

  • новая отрасль знаний, которая, с одной стороны, представляет комплекс аппаратных и программных средств, используемых для формирования, преобразования и выдачи информации в визуальной форме на средства отображения ЭВМ;

  • совокупность методов и приемов для преобразования при помощи ЭВМ данных в графическое представление;

  • вид искусства.

Ожидаемые результаты:


  1. Студенты получат представление о видах графики.

  2. Узнают о сферах применения

  3. Научатся распознавать виды графики

  4. Получат практические навыки применения полученных знаний с использованием различных видов графики.

Виды графики

Представление данных на компьютере в графическом виде впервые было реализовано в середине 50-х годов. Сначала, графика применялась в научно-военных целях.

Под видами компьютерной графики подразумевается способ хранения изображения на плоскости монитора.

Машинная графика в настоящее время уже вполне сформировалась как наука. Существует аппаратное и программное обеспечение для получения разнообразных изображений - от простых чертежей до реалистичных образов естественных объектов. Машинная графика используется почти во всех научных и инженерных дисциплинах для наглядности восприятия и передачи информации. Знание её основ в наше время необходимо любому ученому или инженеру. Машинная графика властно вторгается в бизнес, медицину, рекламу, индустрию развлечений. Примене­ние во время деловых совещаний демонстрационных слайдов, под­готовленных методами машинной графики и другими средствам автоматизации конторского труда, считается нормой. В медицине становится обычным получение трехмерных изображений внутренних ­органов по данным компьютерных томографов. В наши дни телевидение и другие рекламные предприятия часто прибегают к услугам машинной графики и компьютерной мультипликации. Использование машинной графики в индустрии развлечений охватыва­ет такие несхожие области как видеоигры и полнометражные художественные фильмы.

В зависимости от способа формирования изображений компьютерную графику подразделяют:

Показ презентации «Вектор-растр»


  • Растровая графика.

  • Векторная графика.

  • Трехмерная графика .

  • Фрактальная графика.

  • Символьная графика (устарела и на сегодняшний день практически не используется, поэтому рассматривать ее не будем)
Учащиеся рисуют таблицу и самостоятельно во время лекции заполняют её. Во время подведения итогов урока проверяется заполнение таблицы.

Растровое изображение

Растровое изображение составляется из мельчайших точек (пикселов) – цветных квадратиков одинакового размера. Растровое изображение подобно мозаике - когда приближаете (увеличиваете) его, то видите отдельные пиксели, а если удаляете (уменьшаете), пиксели сливаются.

Компьютер хранит параметры каждой точки изображения (её цвет, координаты). Причём каждая точка представляется определенным количеством бит (в зависимости от глубины цвета). При открытии файла программа прорисовывает такую картину как мозаику – как последовательность точек массива. Глубина цвета - сколько битов отведено на хранение цвета каждой точки:
- в черно-белом - 1 бит
- в полутоновом - 8 бит
- в цветном - 24 (32) бита на каждую точку.

Растровые файлы имеют сравнительно большой размер, т.к. компьютер хранит параметры всех точек изображения.

Поэтому размер файла зависит от параметров точек и их количества:


  • от размера изображения (в большем размере вмещается больше точек),

  • от разрешения изображения (при большем разрешении на единицу площади изображения приходится больше точек).
Чтобы увеличить изображение, приходится увеличивать размер пикселей-квадратиков. В итоге изображение получается ступенчатым, зернистым.

Для уменьшения изображения приходится несколько соседних точек преобразовывать в одну или выбрасывать лишние точки. В результате изображение искажается: его мелкие детали становятся неразборчивыми (или могут вообще исчезнуть), картинка теряет четкость.


Исходное изображение

Фрагмент увеличенного изображения

Как Вы думаете, растровое изображение масштабируется с потерей качества или нет? (Растровое изображение масштабируется с потерей качества)

Растровоеизображение нельзя расчленить. Оно «литое», состоит из массива точек. Поэтому в программах для обработки растровой графики предусмотрен ряд инструментов для выделения элементов «вручную».

Например, в Photoshop - это инструменты «Волшебная палочка», Лассо, режим маски и др.

Оригинал Увеличенный фрагмент для показа массива точек

Близкими аналогами являются живопись, фотография

Программы для работы с растровой графикой:

Microsoft Photo Editor

Adobe Photo Shop

Fractal Design Painter

Micrografx Picture Publisher
Применение:


  • для обработки изображений, требующей высокой точности передачи оттенков цветов и плавного перетекания полутонов. Например, для:

  • ретуширования, реставрирования фотографий;

  • создания и обработки фотомонтажа, коллажей;

  • применения к изображениям различных спецэффектов;

  • после сканирования изображения получаются в растровом виде
Векторное изображение

Если в растровой графике базовым элементом изображения является точка, то в векторной графике – линия. Линия описывается математически как единый объект, и потому объем данных для отображения объекта средствами векторной графики существенно меньше, чем в растровой графике. Линия – элементарный объект векторной графики. Как и любой объект, линия обладает свойствами: формой (прямая, кривая), толщиной, цветом, начертанием (сплошная, пунктирная). Замкнутые линии приобретают свойство заполнения. Охватываемое ими пространство может быть заполнено другими объектами (текстуры, карты) или выбранным цветом. Простейшая незамкнутая линия ограничена двумя точками, именуемыми узлами. Узлы , параметры которых влияют на форму конца линии и характер сопряжения с другими объектами. Все прочие объекты векторной графики составляются из линий. Например, куб можно составить из шести связанных прямоугольников, каждый из которых, в свою очередь, образован четырьмя связанными линиями. Возможно, представить куб и как двенадцать связанных линий, образующих ребра.

Компьютер хранит элементы изображения (линии, кривые, фигуры) в виде математических формул. При открытии файла программа прорисовывает элементы изображения по их математическим формулам (уравнениям).

Точка. Этот объект на плоскости представляется двумя числами (х, у), указывающими его положение относительно начала координат.

Прямая линия. Ей соответствует уравнение y = kx + b . Указав параметры k и b, всегда можно отобразить бесконечную прямую линию в известной системе координат, то есть для задания прямой достаточно двух параметров. Отрезок прямой. Он отличается тем, что требует для описания еще двух параметров – например, координат x 1 и х 2 начала и конца отрезка. Кривая второго порядка. К этому классу кривых относятся параболы, гиперболы, эллипсы, окружности, то есть все линии, уравнения которых содержат степени не выше второй. Кривая второго порядка не имеет точек перегиба. Прямые линии являются всего лишь частным случаем кривых второго порядка. Формула кривой второго порядка в общем виде может выглядеть, например, так:

x2+a1y2+a2xy+a3x+a4y+a5=0.

Кривая третьего порядка. Отличие этих кривых от кривых второго порядка состоит в возможном наличии точки перегиба. Например, график функции у = x 3 имеет точку перегиба в начале координат. Именно эта особенность позволяет сделать кривые третьего порядка основой отображения природных объектов в векторной графике. Например, линии изгиба человеческого тела весьма близки к кривым третьего порядка. Все кривые второго порядка, как и прямые, являются частными случаями кривых третьего порядка.

В общем случае уравнение кривой третьего порядка можно записать так:

x3+a1y3+a2x2y+a3xy2+a4x2+a5y2+a6xy+a7x+a8y+a9=0.

Таким образом, кривая третьего порядка описывается девятью параметрами. Описание ее отрезка потребует на два параметра больше.

Кривая третьего порядка (слева) и кривая Безье (справа)

Кривые Безье. Это особый, упрощенный вид кривых третьего порядка Метод построения кривой Безье (Bezier) основан на использовании пары касательных, проведенных к отрезку линии в ее окончаниях. Отрезки кривых Безье описываются восемью параметрами, поэтому работать с ними удобнее. На форму линии влияет угол наклона касательной и длина ее отрезка. Таким образом, касательные играют роль виртуальных “рычагов”, с помощью которых управляют кривой.

Векторное изображение масштабируется без потери качества: масштабирование изображения происходит при помощи математических операций: параметры примитивов просто умножаются на коэффициент масштабирования.
Изображение может быть преобразовано в любой размер
(от логотипа на визитной карточке до стенда на улице) и при этом его качество не изменится.

Векторноеизображение можно расчленить на отдельные элементы (линии или фигуры), и каждый редактировать , трансформировать независимо.

Векторные файлы имеют сравнительно небольшой размер, т.к. компьютер запоминает только начальные и конечные координаты элементов изображения -этого достаточно для описания элементов в виде математических формул. Размер файла как правило не зависит от размера изображаемых объектов, но зависит от сложности изображения: количества объектов на одном рисунке (при большем их числе компьютер должен хранить больше формул для их построения), характера заливки - однотонной или градиентной) и пр. Понятие «разрешение» не применимо к векторным изображениям.

Векторные изображения: более схематичны, менее реалистичны, чем растровые изображения, «не фотографичны».

Близкими аналогами являются слайды мультфильмов, представление математических функций на графике.


Программы для работы с векторной графикой:

Adobe Illustrator

Fractal Design Expression

Macromedia Freehand

Применение:


  • для создания вывесок, этикеток, логотипов, эмблем и пр. символьных изображений;

  • для построения чертежей, диаграмм, графиков, схем;

  • для рисованных изображений с четкими контурами, не обладающих большим спектром оттенков цветов;

  • для моделирования объектов изображения;

  • для создания 3-х мерных изображений;

Сравнение растрового и векторного изображения.

Компьютерное растровое изображение представляется в виде прямоугольной матрицы, каждая ячейка которой - цветная точка. Т.е. основным элементом растрового изображения является точка. Если изображение экранное, то эта точка называется пикселем.
Трехмерная графика

Для создания реалистичной модели объекта используют геометрические примитивы (прямоугольник, куб, шар, конус и прочие) и гладкие, так называемые сплайновые поверхности. Вид поверхности при этом определяется расположенной в пространстве сеткой опорных точек. Каждой точке присваивается коэффициент, величина которого определяет степень ее влияния на часть поверхности, проходящей вблизи точки. От взаимного расположения точек и величины коэффициентов зависит форма и “гладкость” поверхности в целом.

В упрощенном виде для пространственного моделирования объекта требуется:

спроектировать и создать виртуальный каркас (“скелет”) объекта, наиболее полно соответствующий его реальной форме;


Спроектировать и создать виртуальные материалы , по физическим свойствам визуализации похожие на реальные; присвоить материалы различным частям поверхности объекта (на профессиональном жаргоне – “спроектировать текстуры на объект”);

Настроить физические параметры пространства, в котором будет действовать объект, – задать освещение, гравитацию, свойства атмосферы, свойства взаимодействующих объектов и поверхностей;

Задать траектории движения объектов;

наложить поверхностные эффекты на итоговый анимационный ролик.


Программы для работы с трехмерной графикой:

3D Studio MAX 5, AutoCAD, Компас

Применение:


  • научные расчеты,

  • инженерное проектирование,

  • компьютерное моделирование физических объектов

  • изделия в машиностроении,

  • видеороликах,

  • архитектуре,

  • изделиях машиностроения изображения моделируются и перемещаются в пространстве.
Фрактальная графика

Фрактальная графика – одна из быстроразвивающихся и перспективных видов компьютерной графики. Математическая основа - фрактальная геометрия. Фрактал – структура, состоящая из частей, подобных целому. Одним из основных свойств является самоподобие. Фрактус – состоящий из фрагментов)

Объекты называются самоподобными, когда увеличенные части объекта походят на сам объект. Небольшая часть фрактала содержит информацию о всем фрактале.

В центре находится простейший элемент – равносторонний треугольник, который получил название- фрактальный.

На среднем отрезке сторон строятся равносторонние треугольники со стороной =1/3а от стороны исходного фрактального треугольника

В свою очередь на средних отрезках сторон, являющихся объектами первого поколения строятся треугольника второго поколения1/9а от стороны исходного треугольника.

Таким образом, мелкие объекты повторяют свойства всего объекта. Процесс наследования можно продолжать до бесконечности.

Полученный объект носит название – фрактальной фигуры .

Абстрактные композиции можно сравнить со снежинкой, с кристаллом.


Фрактальная графика основана на математических вычислениях. Базовым элементом фрактальной графики является сама математическая формула, то есть никаких объектов в памяти компьютера не хранится и изображение строится исключительно по уравнениям.

Программа для работы с фрактальной графикой:

Фрактальная вселенная 4.0 fracplanet

Применяют:


  • Математики,

  • Художники
Форматы файлов

Необходимо подробно рассмотреть форматы графических файлов.

Сравнительная характеристика


Растровое

изображение


Векторное

изображение


Трехмерное

изображение


Фрактальное изображение

Кодирование изображений:

составляется из мельчайших точек пикселов) – цветных квадратиков одинакового размера.

состоит из контуров элементов (прямых, кривых линий, геометрических фигур),

Компьютерная графика (КГ) Это область деятельности, в которой компьютеры используются как инструмент для синтеза (создания) изображений, так и для обработки визуальной информации, полученной из реального мира. Также компьютерной графикой называют результат такой деятельности.

Первые шаги: КГ и военные «Мы живем во времена механических и электронных чудес. Одно из них создано в Массачусетском технологическом институте для военно-морского флота» В декабре 1951 года американские телезрители в одной из телепередач увидели представление (презентацию) электронного компьютера Whirlwind ("Вихрь-1"). Вел передачу обозреватель Эдвард Мюрроу, который общался напрямую с компьютерной лабораторией MIT (Массачусетского технологического института). Зрители увидели на экране нечто похожее на слова, составленные из огней иллюминации: “ХЕЛЛО, М-Р МЮРРОУ”. На самом деле никаких лампочек не было - это светились яркие точки на экране дисплея, на ЭЛТ.

Электронный компьютер «Вихрь» Требовалось рассчитать расход топлива, траекторию полета и скорость ракеты «Викинг» (для Пентагона). Телезрители увидели, как на экране «Вихря» появились графики, пути, скорости и расхода топлива ракеты для типичного полета (составлены из светящихся точек) Джей У. Форрест

Назначение «Вихря» Для управления летным тренажером (40 -е гг.) «Вихрь» - первый цифровой компьютер, работающий в реальном времени – универсальная машина для различных систем. Для совершенствования системы противовоздушной обороны (ВВС США): – управление огнем, – противолодочная оборона, – управление воздушным движением Преимущества графического отображения

«Вихрь» - основа для 1 серийной модели компьютера со средствами интерактивной графики Вихрь телефонные линии Филде (близь Бостона) радиолокационная станция в Хэнском- Инструкции программистов для обработки серийных чисел: компьютер получал экранные координаты преобразовывал их в графическую форму рисовал на экране подобие карты Для работы оператора был создан световой пистолет: для получения подробной информации о самолете оператор прикасался стволом пистолета к отметке на экране, от пистолета в компьютер передавался импульс, программа выводила на экран данные о самолете.

КГ в инженерном проектировании Айвен Сазерленд - пионер компьютерной графики, создал первый интерактивный графический пакет «Sketchpad» , прообраз будущих САПР. Он продемонстрировал, что компьютерная графика может быть использована как для художественного и технического применения, в дополнение к демонстрации нового (для того времени) способа взаимодействия человека и компьютера. В качестве манипулятора использовалось световой перо, пришедшее на смену световому пистолету. Айвен Сазерленд прикоснулся кончиком светового пера к центру экрана монитора, где светилось слово «чернила» , от чего оно превратилось в маленький крестик. Затем, нажав одну из кнопок, Сазерленд начал двигать световое перо. На экране возникла ярко-зеленая линия, тянувшаяся от центра крестика к точке, в которой находилось перо. И куда бы оно ни перемещалось, линия следовала за ним. Нажав другую кнопку, Сазерленд оставил линию на экране и убрал световое перо.

Световое перо Содержит фотоэлемент непосредственно в своем корпусе или вне его. Принцип работы: по световоду из стеклянных нитей или проводам сигнал передается в корпус терминала. перо, направленное на экран, воспринимает световой сигнал в момент, когда электронный луч высветил какую-либо деталь изображения перед острием пера. данный сигнал электронная схема фиксирует и опознает, какую деталь указали. Для «рисования» пером: 1 способ: При нажатии на кнопку или корпус пера электронная схема генерирует на экране луч, пробегающий по экрану строками. Экран «вспыхивает» в данный момент. В некотором месте некоторой строки перо воспринимает сигнал, обработав его, схема определяет положение пера. 2 способ: на экран дополнительно выводится маркер – группа точек или маленьких штрихов. Перо наводится на маркер, и тут начинает работать система слежения: маркер «движется» за пером (схема отслеживает какие точки маркера засвечивают перо, а какие нет). Координаты центра маркера передаются в программу и могут быть использованы.

ТХ-2 и «Блокнот» (1961 -1962 гг.) Состав ТХ-2: – световое перо, – экран на электронно-лучевой трубке, – «гигантская» память (286000 байт), – кнопочный блок. Подпрограммы «Блокнота»: перемещение крестика за пером по экрану, запоминание координат крестика в момент нажатия кнопки, вычисление координат новых точек, лежащих на прямой между первоначально заданной и текущей точкой, занесение нового отрезка в часть памяти компьютера, называемую буфером регенерации изображения, рисование дуги и полной окружности, части окружностей, сцепления, позволяющие строить объекты с заданными свойствами. Объект в «Блокноте» - точки, отрезки и дуги, соединенные между собой. 1963 г. – снят фильм о работе «Блокнота» . КГ стала применятся как средство проведения инженерных и конструкторских разработок в промышленности.

КГ: от единичных образов к признанию «General Motors» заключила соглашение с корпорацией IBM на разработку компьютерной системы DAC-1 (Design Augmented by Computers) для конструирования автомобилей (1964 г.). DAC-1: + позволяла проводить плавные кривые, которые нельзя описать простыми математическими формулами, - не имела средств для прямого рисования на экране (поэтому конструктор описывал очертания машины в программе или вводил в память компьютера обычный чертеж, переводя его при помощи специальной камеры в цифровую форму). + оператор мог манипулировать отдельными частями чертежа с помощью электронного планшета.

Единичные образы Интерес к применению новых, графических «способностей» компьютеров проявили: «LOCKHEED-GEORGIA» - компьютерные системы для конструирования самолетов; Нефтяные компании – компьютерные системы для составления карт по данным сейсмической разведки. Но все они создавались в единичном экземпляре для определенных целей!

Графические терминалы 1965 г. - компания IBM выпустила первый графический терминал IBM-2250 для работы с компьютерами серии «System-360» . - быстродействие программы недостаточно велико, чтобы можно было оперировать сложными изображениями, - операция вращения занимает много процессорного времени. 1968 г. - «Evans and Sutherland» создание новой системы LDS-1: возможность менять + сократилось время регенерации изображения, изображение с невиданной + число линий, выводимых на экран без мерцания возросло скоростью не менее чем в 100 раз - очень высокая стоимость (250000$, вдвое дороже IBM-2250) «Тetroniks» - создание запоминающей электронно-лучевой трубки (ЗЭЛТ), встраиваемой в терминал: + дешевая стоимость (4000$), - возможность работы только с плоскими изображениями, - медленный процесс построения изображения, - размытое, бледное изображение, - отсутствие возможности выборочного стирания частей изображения и вращения. Тем не менее изображения напоминали чертежи, о реалистичном изображении не было и речи

Расширение графических возможностей Растровые мониторы: + реалистичное изображение - высокие требования к памяти высокая стоимость, т. к. : до 60 -х гг. ЗУ компьютера строились преимущественно на дорогостоящих магнитных сердечниках (500000$ за миллион бит), с середины 60 -х гг. стали применять магнитный барабан (~ 30000$), который мог хранить данные для 10 кадров изображения. Растровые системы применяли на крупных электростанциях, в центрах управления метрополитеном и в научных лабораториях. НАСА для изучения поверхности Марса (1969 -1972 гг.).

Интегральные схемы (начало 70 -х гг.) Появились кадровые буферы на сдвиговых регистрах, выполненных в виде интегральных схем: + работают быстрее механических буферов на магнитных барабанах, - латентность (задержка между вводом информации и появлением ее на экране). ИС – это небольшой монокристалл кремния, содержащий множество электронных компонентов.

Запоминающие устройства с произвольным доступом (ЗУПД) 1968 г. – память ЗУПД = 256 бит, стоимость – 1$ за бит, конец 70 -х гг. - память ЗУПД = 1024 бит, 1973 г. - память ЗУПД = 4 Кб, 1975 г. - память ЗУПД = 16 Кб, 1980 г. - память ЗУПД = 64 Кб, 1983 г. - память ЗУПД = 256 Кб, 1984 г. - память ЗУПД = 1024 Кб=1 Мб! «… если бы стоимость автомобилей падала так же быстро, как цена ИС памяти, сегодня “роллс-ройс” можно было бы купить за 1$» Карл Макговер

1974 г. Работа над проблемой повышения качества изображений, получаемых со спутников, которые ведут наблюдение за с/х и лесными угодьями, минеральными ресурсами и т. д. Для этого разработчики снизили требования к памяти, используя для каждого изображения всего лишь несколько сотен цветов, т. е. создали таблицы выбора цветов, быстро приспособленных для многих областей применения машинной графики. Кадровый буфер хранит не саму информацию о цветах, а указатели на адреса памяти, где она записана. Так, кадровый буфер, в котором каждый пиксел описывается 8 битами, может дать только 256 сочетаний красного, зеленого и синего лучей ЭЛТ. Если же 8 бит задают адреса, то цвета можно выбирать из почти неограниченного набора оттенков, интенсивности и насыщенности. Более того, таблицу выбора можно перепрограммировать для определенных типов изображений. Т. о. ограниченная палитра позволяет получать плавные тени и хорошо различимые оттенки для каждого изображения.

КГ: взаимодействие человека и компьютера «Художники пишут картины, нанося краски на холст. Те, кто связан с компьютерной графикой, создают свои творения, придумывая математические функции, графики которых похожи на предметы» . Джеймс Блинн К середине 80 -х г. даже самые дешевые домашние компьютеры начали оснащать интегральными схемами, выполняющими основные графические функции. 70 -80 -е гг. – КГ все глубже проникает в повседневную жизнь.

КГ: массовое применение «Xerox» - выпустила 2000 компьютеров Alto, проводила стажировку для инженеров в области КГ. «Apple» (С. Джобс, С. Возняк) + «Xerox» = создали первый для серийного выпуска ПК «Лиза» , обладающего широкими графическими возможностями и оснащенного манипулятором «мышь» . «Apple» выпустила ПК Macintosh - «дружественной» машины по отношению к пользователям. В к. 80 -х гг. : появляется оконный графический интерфейс, ПК оснащаться «мышью» , развивается система WYSIWYG (What You See What You Get - что ты видишь, то ты и получишь), создаются первые настольные издательские системы (1986 г.), появляются программы для профессиональных художников и дизайнеров (1986 г.)

Аппаратные платформы КГ 1. Компьютеры Apple Macintosh применяются преимущественно художниками и дизайнерами-графиками, а также в полиграфии; 2. Компьютеры Silicon Graphics являются инструментом профессиональных аниматоров, а также конструкторовпроектировщиков в силу ряда технических характеристик. 3. Компьютеры РС применяются в графическом дизайне, полиграфии и даже анимации.

История развития КГ 1940 -1970 гг. – время больших компьютеров (эра до персональных компьютеров). Графикой занимались только при выводе на принтер. В этот период заложены математические основы. Особенности: пользователь не имел доступа к монитору, графика развивалась на математическом уровне и выводилась в виде текста, напоминающего на большом расстоянии изображение. Графопостроители появились в конце 60 -х годов и практически были не известны. 1971 -1985 гг. – появились персональные компьютеры, т. е. появился доступ пользователя к дисплеям. Роль графики резко возросла, но наблюдалось очень низкое быстродействие компьютера. Программы писались на ассемблере. Появилось цветное изображение (256). Особенности: этот период характеризовался зарождением реальной графики.

История развития КГ 1986 -1990 гг. – появление технологии Multimedia (Мультимедиа). К графике добавились обработка звука и видеоизображения, общение пользователя с компьютером расширилось. Особенности: – появление диалога пользователя с персональным компьютером; – появление анимации и возможности выводить цветное изображение. 1991 -2008 гг. – появление графики нашего дня Virtual Reality. Появились датчики перемещения, благодаря которым компьютер меняет изображения при помощи сигналов посылаемых на него. Появление стереоочков (монитор на каждый глаз), благодаря высокому быстродействию которых, производится имитация реального мира. Замедление развития этой технологии из-за опасения медиков, т. к. благодаря Virtual Reality можно очень сильно нарушить психику человека, благодаря мощному воздействию цвета на неё.

История компьютерной графики в России История компьютерной графики в СССР началась практически одновременно с её рождением в США.

1964 - Первая компьютерная визуализация В Институте прикладной математики (ИПМ), г. Москва, Ю. М. Баяковским и Т. А. Сушкевич продемонстрирован первый опыт практического применения машинной графики при выводе на характрон последовательности кадров, образующих короткий фильм с визуализацией обтекания цилиндра плазмой.

1968 Первый отечественный растровый дисплей В ВЦ АН СССР, на машине БЭСМ-6 установлен первый отечественный растровый дисплей, с видеопамятью на магнитном барабане весом 400 кг. Первая дипломная работа по машинной графике в Московском университете Фолкер Хаймер. Транслятор и интерпретатор для программного языка L^6. Рассматривается реализация языка L^6, предложенного Кеннетом Ноултоном для решения некоторых задач анимации. Первый в мире мультфильм, нарисованный компьютером. Сделан из последовательности распечаток, выполненных на перфоленте с помощью машины БЭСМ-4. Этот мультфильм в своё время был большим прорывом в области компьютерного моделирования, ибо картинка не просто нарисована, а получена решением уравнений, задающих движение кошки.

«Кошечка» Кадры фильма формировались путём печати символов БЭСМ-4 на бумаге с помощью АЦПУ-128, затем их готовил к «плёнке» профессиональный художник-мультипликатор. Именно ему принадлежат кадры (следующие за титрами), когда кошка строит рожицы и выгибает спину. Движение кошки моделировалось системой дифференциальных уравнений второго порядка. Вероятно, это первая компьютерная анимация, где использовался такой приём. Уравнения выводил Виктор Минахин. Так как добиться выполнения определенных движений от животного было тяжело, в основу уравнений легли его собственные движения: он ходил на четвереньках и отмечал последовательность работы мышц при этом. Другим важным техническим нововведением мультфильма было представление трехмерного анимируемого объекта в виде иерархической структуры данных, напоминающей октодерево. На западе подобные техники анимации были переоткрыты только в 80 -х годах XX века, хотя в биомеханике такие расчёты движения велись и раньше - с начала 1970 -х гг. Уравнения мультфильма не выводились исходя из физических моделей мышц и суставов животного, они составлены «на глазок» , чтобы воспроизводить типичную походку кошки. Тем не менее авторам удалось достигнуть реализма движений, который отметил, к примеру профессор Университета Огайо Рик Парент, автор фундаментальной книги «Компьютерная анимация: алгоритмы и технология» .

История создания «Кошечки» Мультфильм был начат в лаборатории Александра Кронрода института теоретической и экспериментальной физики (ИТЭФ), но после того, как лаборатория была закрыта, Константинов, вместе с коллективом создателей мультфильма перенесли работу сначала в Институт проблем управления (ИПУ), а затем в Педагогический институт им. Ленина. Перевод полученных при расчёте бумажных распечаток в форму мультфильма вёлся на кафедре научной кинематографии МГУ, которая и значится в титрах. При просчёте мультфильма на разных экземплярах БЭСМ-4 в разных институтах создателям пришлось столкнуться с проблемой несовместимости некоторых машинных кодов для них, из-за чего программу приходилось поправлять на ходу. Первый показ мультфильма состоялся в МГУ. Затем автор неоднократно демонстрировал его на своих лекциях для школьников. Спустя 6 лет в журнале «Проблемы кибернетики» была опубликована статья, подробно описывающая технику создания мультфильма.

1970 Выпущен первый обзор по машинной графике, представленный затем как доклад на Вторую Всесоюзную конференцию по программированию (ВКП-2). Штаркман В. С. , Баяковский Ю. М. Машинная графика. Препринт ИПМ АН СССР, 1970. Первая публикация на русском языке, в которой появилось словосочетание машинная графика.

Защищена первая диссертация в СССР по машинной графике Список нескольких диссертаций приводится ниже: Карлов Александр Андреевич Вопросы математического обеспечения дисплея со световым карандашом и его использование в задачах экспериментальной физики Дубна, 1972 Грин Виктор Михайлович Программное обеспечение для работы с трехмерными объектами на графических терминалах Новосибирск, 1973 Баяковский Юрий Матвеевич Анализ методов разработки графического обеспечения ЭВМ Москва, 1974 Злотник Евгений Матвеевич Разработка и исследование комплекса технических средств и методики проектирования оперативной графической системы Минск, 1974 Лысый Семен Тимофеевич G 1 - Геометрическая система программного обеспечения ЭВМ Кишинев, 1976 Пигузов Сергей Юрьевич Разработка и исследование средств графического взаимодействия геофизика с ЭВМ при обработке данных сейсморазведки Москва, 1976

1976 На русском языке издана книга У. Ньюмена, Р. Спрулла «Основы интерактивной машинной графики» (под редакцией В. А. Львова).

1977 Первая встреча графиков - «региональная конференция» , но собралось достаточно представительное сообщество, получилась Всесоюзная.

1979 Первая всесоюзная конференция по машинной графике прошла в Новосибирске в сентябре. Список следующих конференций: Всесоюзная конференция по проблемам машинной графики Новосибирск, 1981 г. Всесоюзная конференция по проблемам машинной графики и цифровой обработки изображений Владивосток, 24 -26 сентября 1985 г. IV Всесоюзная конференция по машинной графике Протвино, 9 -11 сентября 1987 г. V Всесоюзная конференция по машинной графике "Машинная графика 89" Новосибирск, 31 октября-2 ноября 1989 г.

1979 Первый полутоновой цветной растровый дисплей Гамма-1 Первую пригодную к активному использованию в кино и телевидении дисплейную станцию «Гамма» создали в Институте прикладной физики в новосибирском академ. городке Владимир Сизых, Петр Вельтмандер, Алексей Бучнев, Владимир Минаев и др. Разрешение первой станции было 256× 6 бит, и затем непрерывно увеличивалось. Дисплейная станция Гамма 7. 1 обеспечивала разрешение 1024*768 для прогрессивной развертки монитора 50 Гц и имела объём видеопамяти 1 Мб. Во второй половине 1980 -х гг. «Гамма» , выпускавшаяся серийно, поставлялась и успешно эксплуатировалась государственными телецентрами страны.

1981 Выход графического пакета Атом Разработка пакета была инициирована Ю. М. Баяковским. За основу была взята пропагандируемая им тогда Core System (Каминский, Клименко, Кочин).

1983 Первый спецкурс по машинной графике Ю. М. Баяковский начал читать годовой спецкурс по машинной графике для студентов факультета Вычислительной математики и кибернетики Московского государственного университета. С 1990 г. курс читается как обязательный для студентов второго года обучения.

1985 Первый доклад принят на Eurographics 1985 «Пробили окно в графическую Европу» - первый доклад из СССР принят на конференцию Eurographics 1985. Однако, поскольку Перестройка ещё не началась, то докладчикам не разрешили выехать из СССР, и первый раз советская делегация посетила конференцию только в 1988 году.

1986 Пакет Атом-85 выходит в ЦЕРН Графический пакет Атом-85 выпущен в ЦЕРН, где активно использовался (наравне с Графором) для задач иллюстративной графики (Клименко, Кочин, Самарин).

Граница 80 -х и 90 -х годов Спрос на исследования и разработки на внутрироссийском рынке упал практически до нуля, и вместе с тем исчезли традиционные (советские) возможности финансирования. Но открылись возможности международного сотрудничества. Это привело к кардинальному изменению тематики и условий работы, а также требований к научно-исследовательским и опытно-конструкторским работам (НИОКР).

1990 Организована первая российская компания компьютерной графики «Драйв» В 1989 году, Александр Пекарь, Сергей Тимофеев и Владимир Соколов организовали студию компьютерной графики на ВПТО «Видеофильм» , которая спустя год стала первой самостоятельной компанией компьютерной графики, переместившись изпод крыла «Видеофильма» в Центральный павильон ВДНХ.

1991 В феврале в Москве прошла первая международная конференция по компьютерной графике и зрению Графи. Кон"91 Организована Академией наук СССР в лице Института прикладной математики имени М. В. Келдыша АН СССР, Союзом Архитекторов СССР и некоторыми другими организациями при содействии и поддержке международной ассоциации ACM Siggraph (США). Американские гости: Эд Кэтмулл (президент компании «Pixar» , сделавший с Джорджем Лукасом Звездные войны) Джон Ласситер («Pixar» , автор фильма «Tin Toy») Джим Кларк (создатель компании «Silicon Graphics» , законодатель мод в области профессиональных графических станций) Первым российским лауреатом на международном конкурсе PRIX ARS ELECTRONICA в номинации Computer Animation стал коллектив из Новосибирска.

1993 Проведен первый фестиваль компьютерной графики и анимации АНИГРАФ"93 В 1992 году Владимиром Лошкарёвым, руководителем фирмы «Joy Company» , занимающейся продвижением на российский рынок пакетов графических программ и оборудования, была организована первая научно-практическая конференция по компьютерной графике. Тогда и пришла идея фестиваля, сочетающего в себе и техническую сторону, и коммерцию, и чистое творчество. Фестиваля АНИГРАФ был организован при участии ВГИКа, сопредседателем оргкомитета стал Сергей Лазарук (проректор по научной и творческой работе ВГИКа). На выставке были представлены все крупнейшие производители графических станций. На творческом конкурсе было представлено более 50 работ. К сожалению, до десятилетнего юбилея фестиваль не дожил, и был закрыт как коммерчески несостоятельный.

1994 Первая компьютерная графика в отечественном кино В фильме «Утомленные солнцем» эпизод с шаровой молнией был подготовлен компанией «Render Club» .

1996 Первые попытки собрать и систематизировать исторические факты Timour Paltashev. Russia: Computer Graphics -Between the Past and the Future. Computer Graphics, vol. 30, No. 2, May 1996. Special issue: Computer Graphics Around the World. Yuri Bayakovsky. Russia: Computer Graphics Education Takes Off in the 1990"s. Computer Graphics, Vol. 30, No. 3, August 1996. Special issue: Computer Graphics Education -- Worldwide Effort

2000 -2001 гг. 2000 г. - Спецвыпуск журнала Computer&Graphics Vol. 24 «Computer Graphics in Russia» . 2001 г. - Появление виртуальной реальности в России. В Протвино прошла первая конференция из серии VEon. PC с демонстрацией созданной группой Станислава Клименко в кооперации с Мартином Гебелем (ИМК, С. Августин) первой в России установки виртуальной реальности.

2003 Первая конференция КРИ-2003 разработчиков компьютерных игр 21 и 22 марта 2003 года в Московском Государственном Университете состоялась первая международная Конференция Разработчиков компьютерных Игр (КРИ) в России, организованная DEV. DTF. RU - ведущим специализированным ресурсом в Рунете для игровых разработчиков и издателей. КРИ 2003 впервые в истории российской игровой индустрии собрала для обмена опытом и обсуждения самых различных проблем практически всех профессионалов отрасли. В КРИ 2003 приняло участие около 40 компаний из России, а также ближнего и дальнего зарубежья, действующих как в сфере разработки, так и издания игрового ПО, а общее число посетителей конференции, по различным оценкам, составило от 1000 до 1500 человек.

2006 Первая практическая конференция по компьютерной графике и анимации CG Event-2006 Вдохновленные конференцией SIGGRAPH, автором книги «Понимая Maya» Сергей Цыпцын и создателем сайта cgtalk. ru Александр Костин была организована первая практическая конференция по компьютерной графике CG Event, ставшая идейной наследницей фестиваля АНИГРАФ. В первой же CG Event участвовало более 500 человек, и в последующем количество участников только росло.


История компьютерной графики

История развития компьютерной графики началось уже в 20 веке и продолжается сегодня. Не секрет то, что именно графика способствовала быстрому росту быстродействию компьютеров.

1940-1970гг. – время больших компьютеров (эра до персональных компьютеров). Графикой занимались только при выводе на принтер. В этот период заложены математические основы.

Особенности: пользователь не имел доступа к монитору, графика развивалась на математическом уровне и выводилась в виде текста, напоминающего на большом расстоянии изображение. Графопостроители появились в конце 60-х годов и практически были не известны.

1971-1985гг. – появились персональные компьютеры, т.е. появился доступ пользователя к дисплеям. Роль графики резко возросла, но наблюдалось очень низкое быстродействие компьютера. Программы писались на ассемблере. Появилось цветное изображение (256).

Особенности: этот период характеризовался зарождением реальной графики.

1986-1990гг. – появление технологии Multimedia (Мультимедиа). К графике добавились обработка звука и видеоизображения, общение пользователя с компьютером расширилось.

Особенности: появление диалога пользователя с персональным компьютером; появление анимации и возможности выводить цветное изображение.

1991-2008гг. – появление графики нашего дня Virtual Reality. Появились датчики перемещения, благодаря которым компьютер меняет изображения при помощи сигналов посылаемых на него. Появление стереоочков (монитор на каждый глаз), благодаря высокому быстродействию которых, производится имитация реального мира. Замедление развития этой технологии из-за опасения медиков, т.к. благодаря Virtual Reality можно очень сильно нарушить психику человека, благодаря мощному воздействию цвета на неё.

Следствие использования графики

Совершенно изменилась архитектура программ. Если раньше отец программирования Вирт говорил, что любая программа это алгоритм + структура данных, то с появлением компьютерной графики на персональном компьютере программа – это алгоритм + структура данных + интерфейс пользователя (графический).

Программирование называют теперь визуальным программированием, т.е. компилятор дает большое количество диалоговых окон, где вводятся координаты и виден прообраз результата, и можно менять прообраз программы.

В 90-х годах появился стандарт изображения схем алгоритмов UML, его используют все учебники. Он учитывает объектно- ориентированные программы и способен изображать многозадачность. Имеется возможность схемы алгоритма рисовать самому из готовых стандартных форм. Т.к. все программы используют графику (меню, товарные знаки, всякие вспомогательные изображения) их можно делать в современных компиляторах, не выходя из компилятора. UML рассматривается как международный стандарт. В нем 12 групп символов (каждая из групп с определением определенной специфики) и способов взаимосвязи между ними.

Переход к графическому интерфейсу был вынужден тем фактом, что человек воспринимает 80% данных через картинку, и лишь 20% - через ум, чувства и т.д.

ВВЕДЕНИЕ

Представление данных на мониторе компьютера в графическом виде впервые было реализовано в середине 50-х годов для больших ЭВМ, применявшихся в научных и военных исследованиях. С тех пор графический способ отображения данных стал неотъемлемой принадлежностью подавляющего числа компьютерных систем, в особенности персональных. Графический интерфейс пользователя сегодня является стандартом “де-факто” для программного обеспечения разных классов, начиная с операционных систем.

Существует специальная область информатики, изучающая методы и средства создания и обработки изображений с помощью программно-аппаратных вычислительных комплексов, – компьютерная графика. Она охватывает все виды и формы представления изображений, доступных для восприятия человеком либо на экране монитора, либо в виде копии на внешнем носителе (бумага, кинопленка, ткань и прочее). Без компьютерной графики невозможно представить себе не только компьютерный, но и обычный, вполне материальный мир. Визуализация данных находит применение в самых разных сферах человеческой деятельности. Для примера назовем медицину (компьютерная томография), научные исследования (визуализация строения вещества, векторных полей и других данных), моделирование тканей и одежды, опытно-конструкторские разработки.

В зависимости от способа формирования изображений компьютерную графику принято подразделять на растровую, векторную и фрактальную.

Отдельным предметом считается трехмерная (3D) графика, изучающая приемы и методы построения объемных моделей объектов в виртуальном пространстве. Как правило, в ней сочетаются векторный и растровый способы формирования изображений.

Особенности цветового охвата характеризуют такие понятия, как черно-белая и цветная графика. На специализацию в отдельных областях указывают названия некоторых разделов: инженерная графика, научная графика, Web-графика, компьютерная полиграфия и прочие.

На стыке компьютерных, телевизионных и кинотехнологий зародилась и стремительно развивается сравнительно новая область компьютерной графики и анимации.

Заметное место в компьютерной графике отведено развлечениям. Появилось даже такое понятие, как механизм графического представления данных (Graphics Engine). Рынок игровых программ имеет оборот в десятки миллиардов долларов и часто инициализирует очередной этап совершенствования графики и анимации.

Хотя компьютерная графика служит всего лишь инструментом, ее структура и методы основаны на передовых достижениях фундаментальных и прикладных наук: математики, физики, химии, биологии, статистики, программирования и множества других. Это замечание справедливо как для программных, так и для аппаратных средств создания и обработки изображений на компьютере. Поэтому компьютерная графика является одной из наиболее бурно развивающихся отраслей информатики и во многих случаях выступает “локомотивом”, тянущим за собой всю компьютерную индустрию.

ВИДЫ ГРАФИКИ

Фрактальная графика

Фрактальная графика основана на математических вычислениях. Базовым элементом фрактальной графики является сама математическая формула, то есть никаких объектов в памяти компьютера не хранится и изображение строится исключительно по уравнениям. Таким способом строят как простейшие регулярные структуры, так и сложные иллюстрации, имитирующие природные ландшафты и трехмерные объекты.

Трехмерная графика

Трехмерная графика нашла широкое применение в таких областях, как научные расчеты, инженерное проектирование, компьютерное моделирование физических объектов (рис. 3). В качестве примера рассмотрим наиболее сложный вариант трехмерного моделирования – создание подвижного изображения реального физического тела.

В упрощенном виде для пространственного моделирования объекта требуется:

Спроектировать и создать виртуальный каркас (“скелет”) объекта, наиболее полно соответствующий его реальной форме;

Спроектировать и создать виртуальные материалы, по физическим свойствам визуализации похожие на реальные;

Присвоить материалы различным частям поверхности объекта (на профессиональном жаргоне – “спроектировать текстуры на объект”);

Настроить физические параметры пространства, в котором будет действовать объект, – задать освещение, гравитацию, свойства атмосферы, свойства взаимодействующих объектов и поверхностей;

Задать траектории движения объектов;

Наложить поверхностные эффекты на итоговый анимационный ролик.

Для создания реалистичной модели объекта используют геометрические примитивы (прямоугольник, куб, шар, конус и прочие) и гладкие, так называемые сплайновые поверхности. В последнем случае применяют чаще всего метод бикубических рациональных В-сплайнов на неравномерной сетке (NURBS). Вид поверхности при этом определяется расположенной в пространстве сеткой опорных точек. Каждой точке присваивается коэффициент, величина которого определяет степень ее влияния на часть поверхности, проходящей вблизи точки. От взаимного расположения точек и величины коэффициентов зависит форма и “гладкость” поверхности в целом.

Растровая графика

Для растровых изображений, состоящих из точек, особую важность имеет понятие разрешения, выражающее количество точек, приходящихся на единицу длины. При этом следует различать:

Разрешение оригинала;

Разрешение экранного изображения;

Разрешение печатного изображения.

Разрешение оригинала. Разрешение оригинала измеряется в точках на дюйм (dots per inch – dpi) и зависит от требований к качеству изображения и размеру файла, способу оцифровки и создания исходной иллюстрации, избранному формату файла и другим параметрам. В общем случае действует правило: чем выше требование к качеству, тем выше должно быть разрешение оригинала.

Разрешение экранного изображения. Для экранных копий изображения элементарную точку растра принято называть пикселом. Размер пиксела варьируется в зависимости от выбранного экранного разрешения (из диапазона стандартных значений), разрешение оригинала и масштаб отображения.

Мониторы для обработки изображений с диагональю 20–21 дюйм (профессионального класса), как правило, обеспечивают стандартные экранные разрешения 640х480, 800х600, 1024х768, 1280х1024, 1600х1200, 1600х1280, 1920х1200, 1920х1600 точек. Расстояние между соседними точками люминофора у качественного монитора составляет 0,22–0,25 мм.

Для экранной копии достаточно разрешения 72 dpi, для распечатки на цветном или лазерном принтере 150–200 dpi, для вывода на фотоэкспонирующем устройстве 200–300 dpi. Установлено эмпирическое правило, что при распечатке величина разрешения оригинала должна быть в 1,5 раза больше, чем линиатура растра устройства вывода. В случае, если твердая копия будет увеличена по сравнению с оригиналом, эти величины следует умножить на коэффициент масштабирования. Размер точки растрового изображения как на твердой копии (бумага, пленка и т. д.), так и на экране зависит от примененного метода и параметров растрирования оригинала. При растрировании на оригинал как бы накладывается сетка линий, ячейки которой образуют элемент растра. Частота сетки растра измеряется числом линий на дюйм (lines per inch – Ipi) и называется линиатурой.
Векторная графика

Если в растровой графике базовым элементом изображения является точка, то в векторной графике – линия. Линия описывается математически как единый объект, и потому объем данных для отображения объекта средствами векторной графики существенно меньше, чем в растровой графике. Линия – элементарный объект векторной графики. Как и любой объект, линия обладает свойствами: формой (прямая, кривая), толщиной, цветом, начертанием (сплошная, пунктирная). Замкнутые линии приобретают свойство заполнения. Охватываемое ими пространство может быть заполнено другими объектами (текстуры, карты) или выбранным цветом. Простейшая незамкнутая линия ограничена двумя точками, именуемыми узлами. Узлы также имеют свойства, параметры которых влияют на форму конца линии и характер сопряжения с другими объектами. Все прочие объекты векторной графики составляются из линий. Например, куб можно составить из шести связанных прямоугольников, каждый из которых, в свою очередь, образован четырьмя связанными линиями. Возможно, представить куб и как двенадцать связанных линий, образующих ребра.
Представление данных графики
Форматы графических данных

В компьютерной графике применяют по меньшей мере три десятка форматов файлов для хранения изображений. Но лишь часть из них стала стандартом “де-факто” и применяется в подавляющем большинстве программ. Как правило, несовместимые форматы имеют файлы растровых, векторных, трехмерных изображений, хотя существуют форматы, позволяющие хранить данные разных классов. Многие приложения ориентированы на собственные “специфические” форматы, перенос их файлов в другие программы вынуждает использовать специальные фильтры или экспортировать изображения в “стандартный” формат.

TIFF (Tagged Image File Format). Формат предназначен для хранения растровых изображений высокого качества (расширение имени файла.TIF). Относится к числу широко распространенных, отличается переносимостью между платформами (IBM PC и Apple Macintosh), обеспечен поддержкой со стороны большинства графических, верстальных и дизайнерских программ. Предусматривает широкий диапазон цветового охвата – от монохромного черно-белого до 32-разрядной модели цветоделения CMYK. Начиная с версии 6.0 в формате TIFF можно хранить сведения о масках (контурах обтравки) изображений. Для уменьшения размера файла применяется встроенный алгоритм сжатия LZW.
и т.д.................

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Подобные документы

    Понятие и виды компьютерной графики. Применение спецэффектов в кинематографе. История развития компьютерной графики. Изменение частоты киносъемки с помощью спецэффектов. Виды компьютерной графики как способ хранения изображения на плоскости монитора.

    реферат , добавлен 16.01.2013

    Методы и средства создания и обработки изображений с помощью программно-аппаратных вычислительных комплексов. Области применения компьютерной графики. Особенности научной, деловой, конструкторской и художественной графики. Графическая система компьютера.

    презентация , добавлен 03.02.2017

    Компьютерная графика - область информатики, занимающаяся проблемами получения различных изображений. Виды компьютерной графики: растровая, векторная, фрактальная. Программы для создания компьютерной анимации, область применения, форматы хранения.

    реферат , добавлен 16.03.2010

    Ознакомление с понятием компьютерной графики. Области применения конструкторской и рекламной графики, компьютерной анимации. Рассмотрение преимущества графической визуализации бизнес-процессов. Особенности кольцевой, биржевой и лепестковой диаграмм.

    реферат , добавлен 02.02.2016

    Компьютерная графика как область информатики, занимающаяся проблемами получения различных изображений на компьютере. Области применения компьютерной графики. Двумерная графика: фрактальная, растровая и векторная. Особенности трёхмерной графики.

    реферат , добавлен 05.12.2010

    Сферы применения машинной графики. Виды компьютерной графики. Цветовое разрешение и цветовые модели. Программное обеспечение для создания, просмотра и обработки графической информации. Графические возможности текстовых процессоров, графические редакторы.

    контрольная работа , добавлен 07.06.2010

    Основные понятия и задачи, решаемые компьютерной графикой. Характеристика и разновидности компьютерной графики. Цветовые модели RGB, CMYK, HSB. Графические форматы растровых и векторных изображений. Особенности шелкографии, трёхмерная графика и анимация.

    курсовая работа , добавлен 20.02.2012

    Основные виды компьютерной графики. Достоинства и недостатки векторной графики. Сущность понятия "коэффициент прямоугольности пикселей". Математическая основа фрактальной графики. Сущность понятий "фрактал", "фрактальная геометрия", "фрактальная графика".

    контрольная работа , добавлен 13.07.2010